
Now given 3 sides Ha, Hb and Hc. We have to calculate the area A.
If three sides are a, b and c we can have -
A = \frac{1}{2} \times a \times Ha ........ (1) A = \frac{1}{2} \times b \times Hb ........ (2) A = \frac{1}{2} \times c \times Hc ........ (3)
Now from 1 and 2, we can get
\frac{a}{b} = \frac{Hb}{Ha} ........ (4) \frac{b}{c} = \frac{Hc}{Hb} ........ (5)
From (4) and (5)
a : b : c = Hb \times Hc : Hc \times Ha : Ha \times Hb As Ha, Hb and Hc given, we got the ratio of a, b and c.
So there will be a k, for which
a = k \times Hb \times Hc ...... (6) b = k \times Hc \times Ha ...... (7) c = k \times Ha \times Hb ...... (8)
If the angles are A, B and C. We know that -
\cos C = \frac{a^2 + b^2 - c^2}{2 \times b \times c} = \frac{Hb^2 \times Hc^2 + Hc^2 \times Ha^2 + Ha^2 \times Hb^2}{2 \times Hb \times Hc^2 \times Ha}
So, C = \cos^{-1} \frac{Hb^2 \times Hc^2 + Hc^2 \times Ha^2 + Ha^2 \times Hb^2}{2 \times Hb \times Hc^2 \times Ha}
Now, from sin rule
Ha = b \times \sin C So, b = \frac{Ha} {\sin C} ...... (9)
From (7) and (9) we get
k = \frac{1} {Hc \times \sin C}
We know Ha, Hb, Hc, and k, so we can calculate the exact value of a, b and c. So we can calculate the area of triangle by the following formula -
A = \sqrt{ \frac{s \times (s - a) \times (s - b) \times (s - c)} {2} }, where s = \frac{a + b + c}{2} This was my solution.
While discussing my solution with Nafi, he gave me a much smarter solution, Here it is
Area
A = \frac{1}{2} \times a \times Ha So a = 2 \times \frac{A}{Ha} ... (1) Similarly, b = 2 \times \frac{A}{Hb} ... (2) c = 2 \times \frac{A}{Hc} ... (3) Now, \begin{align} s &= \frac{a + b + c}{2}\\ &= (\frac{A}{Ha} + \frac{A}{Hb} + \frac{A}{Hc}) \end{align} And, A^2 = s \times (s - a) \times (s - b) \times (s - c) A^2 = (\frac{A}{Ha} + \frac{A}{Hb} + \frac{A}{Hc}) \times (\frac{A}{Hb} + \frac{A}{Hc} - \frac{A}{Ha}) \times (\frac{A}{Hc} + \frac{A}{Ha} - \frac{A}{Hb}) \times (\frac{A}{Ha} + \frac{A}{Hb} - \frac{A}{Hc}) \Rightarrow A^2 = A^4 \times (\frac{1}{Ha} + \frac{1}{Hb} + \frac{1}{Hc}) \times (\frac{1}{Hb} + \frac{1}{Hc} - \frac{1}{Ha}) \times (\frac{1}{Hc} + \frac{1}{Ha} - \frac{1}{Hb}) \times (\frac{1}{Ha} + \frac{1}{Hb} - \frac{1}{Hc}) \Rightarrow A^2 = \frac{1}{(\frac{1}{Ha} + \frac{1}{Hb} + \frac{1}{Hc}) \times (\frac{1}{Hb} + \frac{1}{Hc} - \frac{1}{Ha}) \times (\frac{1}{Hc} + \frac{1}{Ha} - \frac{1}{Hb}) \times (\frac{1}{Ha} + \frac{1}{Hb} - \frac{1}{Hc})} \Rightarrow A = \sqrt{\frac{1}{(\frac{1}{Ha} + \frac{1}{Hb} + \frac{1}{Hc}) \times (\frac{1}{Hb} + \frac{1}{Hc} - \frac{1}{Ha}) \times (\frac{1}{Hc} + \frac{1}{Ha} - \frac{1}{Hb}) \times (\frac{1}{Ha} + \frac{1}{Hb} - \frac{1}{Hc})}}
Much cleaner solution. Thanks Nafi.
No comments:
Post a Comment